Assignment 3 for MATH4220

February 25,2016

(No need to hand in.)

Exercise 3.1: 1, 2, 3, 4 Exercise 3.2: 1, 2, 3, 5, 6 Exercise 3.3: 1, 2, 3 Exercise 3.4: 1, 2, 3, 4, 5, 8, 9, 12, 13, 14 Exercise 3.5: 1, 2

Exercise 3.1

- 1. Solve $u_t = k u_{xx}$; $u(x, 0) = e^{-x}$; u(0, t) = 0 on the half-line $0 < x < \infty$.
- 2. Solve $u_t = k u_{xx}$; u(x, 0) = 0; u(0, t) = 1 on the half-line $0 < x < \infty$.
- 3. Derive the solution formula for the half-line Neumann problem $w_t kw_{xx} = 0$ for $0 < x < \infty, 0 < t < \infty$; $w_x(0,t) = 0$; $w(x,0) = \phi(x)$.
- 4. Consider the following problem with a Robin boundary condition:

DE:	$u_t = k u_{xx}$	on the half line $0 < x < \infty, 0 < t < \infty$	
IC:	u(x,0) = x	for $t = 0$ and $0 < x < \infty$	(*)
BC:	$u_x(0,t) - 2u(0,t) = 0$	for $x = 0$.	

The purpose of this exercise is to verify the solution for (*). Let f(x) = x for x > 0, let $f(x) = x + 1 - e^{2x}$ for x < 0, and let

$$v(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt} f(y) \, dy$$

- (a) What PDE and initial condition does v(x, t) satisfy for $-\infty < x < \infty$?
- (b) Let $w = v_x 2v$. What PDE and initial condition does w(x, t) satisfy for $-\infty < x < \infty$?
- (c) Show that f'(x) 2f(x) is an odd function (for $x \neq 0$).
- (d) Use Exercise 2.4.11 to show that w is an odd function of x.
- (e) Deduce that v(x,t) satisfies (*) for x > 0. Assuming uniqueness, deduce that the solution of (*) is given by

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt} f(y) \, dy$$

Exercise 3.2

- 1. Solve the Neumann problem for the wave equation on the half-line $0 < x < \infty$.
- 2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the wave equation $u_{tt} = c^2 u_{xx}$ for x > 0. Assume that the end x = 0 is free $(u_x = 0)$; it is initially at rest but has a constant initial velocity V for a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the times t = 0, a/c, 3a/2c, 2a/c, and 3a/c.
- 3. A wave f(x + ct) travels along a semi-infinite string $(0 < x < \infty)$ for t < 0. Find the vibrations u(x, t) of the string for t > 0 if the end x = 0 is fixed.

- 5. Solve $u_{tt} = 4u_{xx}$ for $0 < x < \infty$, u(0,t) = 0, $u(x,0) \equiv 1$, $u_t(x,0) \equiv 0$ using the reflection method. This solution has a singularity; find its location.
- 6. Solve $u_{tt} = c^2 u_{xx}$ for $0 < x < \infty, 0 \le t < \infty, u(x,0) = 0, u_t(x,0) = V$, $u_t(0,t) + au_x(0,t) = 0$,

where V, a and c are positive constants and a > c.

Exercise 3.3

1. Solve the inhomogeneous diffusion equation on the half-line with Dirichlet boundary condition:

$$u_t - ku_{xx} = f(x, t)$$
 $(0 < x < \infty, 0 < t < \infty)$
 $u(0, t) = 0$ $u(x, 0) = \phi(x)$

using the method of reflection.

2. Solve the completely inhomogeneous diffusion problem on the half-line

$$v_t - kv_{xx} = f(x,t)$$
 $(0 < x < \infty, 0 < t < \infty)$
 $v(0,t) = h(t)$ $v(x,0) = \phi(x),$

by carrying out the subtracction method begun in the text.

3. Solve the inhomogeneous Neumann diffusion problem on the half-line

$$w_t - kw_{xx} = 0 \qquad (0 < x < \infty, 0 < t < \infty)$$

$$w_x(0, t) = h(t) \qquad w(x, 0) = \phi(x),$$

by the subtraction method indicated in the text.

Exercise 3.4

- 1. Solve $u_{tt} = c^2 u_{xx} + xt$, u(x, 0) = 0, $u_t(x, 0) = 0$.
- 2. Solve $u_{tt} = c^2 u_{xx} + e^{\alpha x}$, u(x,0) = 0, $u_t(x,0) = 0$.
- 3. Solve $u_{tt} = c^2 u_{xx} + \cos x$, $u(x, 0) = \sin x$, $u_t(x, 0) = 1 + x$.
- 4. Show that the solution of the inhomogeneous wave equation

$$u_{tt} = c^2 u_{xx} + f, \quad u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x),$$

is the sum of three terms, one each for f, ϕ, ψ .

5. Let f(x,t) be any function and let $u(x,t) = (1/2c) \iint_{\Delta} f$, where Δ is the triangle of dependence. Verify directly by differentiation that

$$u_{tt} = c^2 u_{xx} + f$$
 and $u(x, 0) \equiv u_t(x, 0) \equiv 0$.

(*Hint*:Begin by writing the formula as the *iterated* integral

$$u(x,t) = \frac{1}{2c} \int_0^t \int_{x-ct+cs}^{x+ct-cs} f(y,s) \, dyds$$

and differentiate with care using the rule in the Appendix. This exercise is not easy.)

8. Show that the source operator for the wave equation solves the problem

$$\mathscr{S}_{tt} - c^2 \mathscr{S}_{xx} = 0, \mathscr{S}(0) = 0, \mathscr{S}_t(0) = I_s$$

where I is the identity operator.

- 9. Let $u(t) = \int_0^t \mathscr{S}(t-s)f(s) \, ds$. Using only Exercise 8, show that u solves the inhomogeneous wave equation with zero initial data.
- 12. Derive the solution of the fully inhomogeneous wave equation on the half-line

$$v_{tt} - c^2 v_{xx} = f(x, t) \quad \text{in } 0 < x < \infty$$
$$v(x, 0) = \phi(x), \quad v_t(x, 0) = \psi(x)$$
$$v(0, t) = h(t),$$

by means of the method using Green's theorem. (*Hint:* Integrate over the domain of dependence.)

- 13. Solve $u_{tt} = c^2 u_{xx}$ for $0 < x < \infty$, $u(0,t) = t^2$, u(x,0) = x, $u_t(x,0) = 0$.
- 14. Solve the homogeneous wave equation on the half-line $(0, \infty)$ with zero initial data and with the Neumann boundary condition $u_x(0,t) = k(t)$. Use any method you wish.

Exercise 3.5

1. Prove that if ϕ is any piecewise continuous function, then

$$\frac{1}{\sqrt{4\pi}} \int_0^{\pm\infty} e^{-p^2/4} \phi(x + \sqrt{kt}p) \ dp \to \pm \frac{1}{2} \phi(x\pm) \quad \text{as } t \searrow 0.$$

2. Use Exercise 1 to prove Theorem 2.